The Biodiversity Ecosystem Functioning experiment in China has been established in 2009. It involves a huge pool of subtropic tree and shrub species. The main goal is determining the role of tree and shrub species diversity for production, element cycling and species conservation in Chinese subtropical forest ecosystems. Novel ecosystem functioning variables highly relevant for environmental issues in China are also investigated, e.g., prevention of soil erosion, carbon sequestration, and resistance to invasion.

One of the BEF-China sites after weeding in 2009 (Photo: Xuefei Yang)

The experiment consists of two sites (site A, site B), 5 km apart, with two separate species pools that overlap by only 8 species out of the overall tree species pool of 40. All species are equally represented at each diversity level. At one of the two sites, trees of known maternal seed families were planted for 13 tree species.
The plots were planted with a decreasing number of species. The most species-rich plots contain 24 species; plots with 16, 8, 4, 2, 1 and even without trees species were established according to different extinction schemes. In addition, plots with economically important species, plots for free succession and plots with shrub monocultures were planted. Within every plot, 400 trees were planted in a regular fashion (0.6 trees m-2), but mixture of different species was random. In the outer part of the plots, subplots are manipulated to study, e.g., vascular plants in the herb layer, mycorrhiza, decomposers, and herbivores.

Arrangement of the plots at the two sites. The yellow plots are monocultures but also plots planted with commercially important tree species: Cunninghamia lanceolata and Pinus massoniana.

Site characteristics

location Xingangshan
former land use
soil type
area 38.4 ha
no of plots 566
plot size 25.82 m x 25.82 m
no of trees planted 307 200
planting date 2009, 2010
diversity variables species richness
shrub species richness
genetic diversity
diversity gradient 0, 1, 2, 4, 8, 16, 24 tree sp.
2, 4, 8 shrub sp.
size species pool 40 broadleaved tree species + 18 shrub species + 2 commercial coniferous species
species pool tree species: Acer davidii, Ailanthus altissima, Alniphyllum fortune, Betula luminifera, Castanea henryi, Castanopsis carlesii, C. eyrie, C. fargesii, C. sclerophylla, Celtis biondii, Choerospondias axillaris, Cinnamomum camphora, Cyclobalanopsis glauca, C. myrsinifolia, Daphniphyllum oldhamii, Diospyros japonica, Elaeocarpus chinensis, E. glabripetalus, E. japonicas, Idesia polycarpa, Koelreuteria bipinnata, Liquidambar formosana, Lithocarpus glaber, Machilus grijsii, M. leptophylla, M. thunbergii, Manglietia fordiana, Meliosma flexuosa, Nyssa sinensis, Phoebe bournei, Quercus acutissima, Q. fabri, Q. phillyreoides, Q. serrate, Rhus chinensis, Sapindus saponaria, Schima superba, Triadica cochinchinensis, T. sebifera

shrub species: Ardisia crenata, Camellia chekiangoleosa, Distylium buxifolium, D. myricoides, Euonymus myrianthus, Eurya muricata, Ficus erecta, Gardenia jasminoides, Hydrangea chinensis, Itea omeiensis, Loropetalum chinense, Photinia hirsute, Phyllanthus glaucus, Rhaphiolepis indica, Rhododendron ovatum, R. simsii, Syzygium buxifolium, Viburnum setigerum

commercial species: Cunninghamia lanceolata, Pinus massoniana
contact person Helge Bruelheide


We study the effects of species richness and composition on a range of ecosystem functions, including primary productivity, carbon and nutrient cycling, soil processes, the abundance and biodiversity of other trophic groups, and soil erosion. We also investigate whether genetic diversity affects tree performance, multitrophic interactions, and the response to different species diversity levels or environmental variables such as light availability, which may itself be affected by species diversity.

Extra information

Send an e-mail to the contact person, visit the experiment's own website, or explore the publications:

  • Zhang J, Bruelheide H, Chen X, Eichenberg D, Kröber W, Xu X, Xu L, Schuldt A (in press) Tree diversity promotes generalist herbivore community patterns in a young subtropical forest experiment. Oecologia - doi: 10.1007/s00442-016-3769-0
  • Scholten T, Goebes P, Kühn P, Seitz S, Assmann T, Bauhus J, Bruelheide H, Buscot F, Erfmeier A, Fischer M, Härdtle W, He J-S, Ma K, Niklaus PA, Scherer-Lorenzen M, Schmid B, Shi X, Song Z, von Oheimb G, Wirth C, Wubet T, Schmidt K (2017) On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems - a study from SE China Journal of Plant Ecology 10: 111-127 - doi: 10.1093/jpe/rtw065
  • Yang B, Ying L, Ding B, Both S, Erfmeier A, Härdtle W, Ma K, Schmid B, Scholten T, Seidler G, von Oheimb G, Yang X, Bruelheide H (2017) Impact of tree diversity and environmental conditions on the survival of shrub species in a forest biodiversity experiment in subtropical China Journal of Plant Ecology 10: 179-189 - doi: 10.1093/jpe/rtw099
  • Seidelmann KN, Scherer-Lorenzen M, Niklaus PA (2016) Direct vs. microclimate-driven effects of tree species diversity on litter decomposition in young subtropical forest stands. Plos ONE 11(8): e0160569 - doi: 10.1371/journal.pone.0160569
  • Verheyen K, Vanhellemont M, Auge H, Baeten L, Baraloto C, Barsoum N, Bilodeau-Gauthier S, Bruelheide H, Castagneyrol B, Godbold D, Haase J, Hector A, Jactel H, Koricheva J, Loreau M, Mereu S, Messier C, Muys B, Nolet P, Paquette A, Parker J, Perring M, Ponette Q, Potvin C, Reich P, Smith A, Weih M, Scherer-Lorenzen M (2016) Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45: 29-41 - doi: 10.1007/s13280-015-0685-1
  • Goebes P, Bruelheide H, Härdtle W, Kröber W, Kühn P, Li Y, Seitz S, von Oheimb G, Scholten T (2015) Species-specific effects on throughfall kinetic energy in subtropical forest plantations are related to leaf traits and tree architecture. PLoS ONE 10: e0128084 - doi:10.1371/journal.pone.0128084
  • Kröber W, Li Y, Härdtle W, Ma K, Schmid B, Schmidt K, Scholten T, Seidler G, von Oheimb G, Welk E, Wirth C, Bruelheide H (2015) Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment Ecology and Evolution 5: 3541-3556 - doi: 10.1002/ece3.1604
  • Paine CET, Amissah L, Auge H, Baraloto C, Baruffol M, Bourland N, Bruelheide H, Daïnou K, de Gouvenain RC, Doucet J-L, Doust S, Fine PVA, Fortunel C, Haase J, Holl KD, Jactel H, Li X, Kitajima K, Koricheva J, Martínez-Garza C, Messier C, Paquette A, Philipson C, Piotto D, Poorter L, Posada JM, Potvin C, Rainio K, Russo SE, Ruiz-Jaen M, Scherer-Lorenzen M, Webb CO, Wright SJ, Zahawi RA, Hector A (2015) Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology 103: 978-989 - doi: 10.1111/1365-2745.12401
  • Pfaff C-T, König-Ries B, Lang AC, Ratcliffe S, Wirth C, Man X, Nadrowski K (2015) rBEFdata: documenting data exchange and analysis for a collaborative data management platform. Ecology and Evolution 5: 2890-2897 - doi: 10.1002/ece3.1547
  • Schuldt A, Bruelheide H, Härdtle W, Assmann T, Li Y, Ma K, von Oheimb G, Zhang J (2015) Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth. Journal of Ecology 103: 563-571 - doi: 10.1111/1365-2745.12396
  • Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen X-Y, Ding B, Durka W, Erfmeier A, Gutknecht JLM, Guo D, Guo L-D, Härdtle W, He J-S, Klein A-M, Kühn P, Liang Y, Liu X, Michalski S, Niklaus P, Pei K, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, von Oheimb G, Welk E, Wirth C, Wubet T, Yang X, Yu M, Zhang S, Zhou H, Fischer M, Ma K, Schmid B (2014) Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution 5: 74-89 - doi: 10.1111/2041-210X.12126
  • Li Y, Hess C, von Wehrden H, Härdtle W, von Oheimb G (2014) Assessing tree dendrometrics in young regenerating plantations using terrestrial laser scanning. Annals of Forest Science 71: 453-462 - doi: 10.1007/s13595-014-0358-4
  • Li Y, Härdtle W, Bruelheide H, Nadrowski K, Scholten T, von Wehrden H, von Oheimb G (2014) Site and neighborhood effects on growth of tree saplings in subtropical plantations (China). Forest Ecology and Management 327: 118-127 - doi: 10.1016/j.foreco.2014.04.039
  • Nadrowski K, Ratcliffe S, Bönisch G, Bruelheide H, Kattge J, Liu X, Maicher L, Mi X, Prilop M, Seifarth D, Welter K, Windish S, Wirth C (2013) Harmonizing, annotating and sharing data in biodiversity-ecosystem functioning research. Methods in Ecology and Evolution 4: 201-205 - doi: 10.1111/2041-210x.12009
  • Yang X, Bauhus J, Both S, Fang T, Härdtle W, Kröber W, Ma K, Nadrowski K, Pei K, Scherer-Lorenzen M, Scholten T, Seidler G, Schmidt B, von Oheimb G, Bruelheide H (2013) Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China) European Journal of Forest Research 132: 593-606 - doi: 10.1007/s10342-013-0696-z

photo plot
Site A - plot M27 in 2014